If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-6561=0
a = 16; b = 0; c = -6561;
Δ = b2-4ac
Δ = 02-4·16·(-6561)
Δ = 419904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{419904}=648$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-648}{2*16}=\frac{-648}{32} =-20+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+648}{2*16}=\frac{648}{32} =20+1/4 $
| f/5-25=-29 | | 34-7r=21 | | 7.5x-21=126 | | g/6+13=21 | | 5(r-2)=1 | | 3n+5=55-2n | | 14+s=6. | | 2x)2-61=1 | | y/10-6=2 | | 8x11=360 | | 2x+6=2(x+4)= | | 4h+9=-2h-17 | | (c−4)=+(3c+9) | | 0,05m=12,3 | | 0,05m=123 | | 2^x•8=4^(x−9) | | 7·x=63 | | 5n-8=4n-6 | | 2(4w+1)/3=-9 | | -7x+3,7=10 | | 10x+9=35 | | 10^2x-10^-2x=3 | | 3(2y-0.3)=19.4-7 | | 7(3a-9)=33 | | {6x/7}-{4/7}=2 | | 3z=100 | | v+3.9=9.57 | | 32=-6t-8 | | 22=7x-14;x= | | 2x+4=18;x7= | | x^2+24x+142.5=0 | | 3x-12=0;x= |